Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid
نویسندگان
چکیده
The flow in an enclosed completely filled rapidly rotating cylinder that is driven by the differential corotation of the top lid is studied numerically. Although the flow is in a very simple geometry, the fast background rotation and large differential rotation of the lid lead to very thin boundary layers with a variety of instability modes with very fine spatial scales as well as inertial waves that are sustained in the fast rotating interior flow and that interact with the viscous modes in the sidewall boundary layer, leading to complex spatiotemporal dynamics. The numerical simulations are compared and contrasted to experimental visualizations of the sidewall boundary layer instabilities reported by Hart and Kittelman “Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder,” Phys. Fluids 8, 692 1996 . The experiments report observing axisymmetric rolls propagating down the sidewall layer for small differential corotation of the top lid. As the differential rotation was increased, backward tilted diagonal rolls that precess slightly retrograde with respect to the rotating sidewall and forward tilted rolls with prograde precession significantly faster than the sidewall rotation were observed. For still larger differential rotation, a wavy turbulent state that has backward tilted structures erupting from deep within the sidewall layer into the interior and is riding on the forward tilted diagonal rolls in the deep layer was observed. Our simulations capture all of these states and strongly suggest that the observed axisymmetric rolls are unstable and were only transiently observed due to the slow and continuous increase in the differential rotation employed in the experiments. The influence of inertial waves driven by the sidewall instabilities on the three-dimensional wavy turbulent state is discussed. © 2010 American Institute of Physics. doi:10.1063/1.3517292
منابع مشابه
Sidewall boundary layer instabilities in confined swirling flow †
We examine enclosed swirling transitional and turbulent flows in a cylindrical vessel, driven by a single rotating endwall. The cylinder height:radius ratio H/R = 1 was chosen explicitly to preclude the possibility of vortex breakdown on the cylinder axis, thus concentrating attention on the behaviour of the cylindrical sidewall boundary layers. Over a range of Reynolds numbers above Re = ΩR2/ν...
متن کاملCharacteristics of endwall and sidewall boundary layers in a rotating cylinder with a differentially rotating endwall
The flow in a rotating cylinder driven by the differential rotation of its top endwall is studied by numerically solving the time-dependent axisymmetric Navier–Stokes equations. When the differential rotation is small, the flow is well described in terms of similarity solutions of individual rotating disks of infinite radius. For larger differential rotations, whether the top is co-rotating or ...
متن کاملOn the Flow Induced by Centrifugal Buoyancy in a Differentially-Heated Rotating Cylinder
We consider the nature of thermally stratified flow in a closed cylinder rotating about the direction of gravity under conditions appropriate for terrestrial laboratory experiments. Motion is driven by centrifugal buoyancy, with outflow near the cold disk and inflow near the hot disk. Although similarity solutions for the infinite disk open-geometry problem exist and are easily found, even anal...
متن کاملInstabilities and inertial waves generated in a librating cylinder
A librating cylinder consists of a rotating cylinder whose rate of rotation is modulated. When the mean rotation rate is large compared with the viscous damping rate, the flow may support inertial waves, depending on the frequency of the modulation. The modulation also produces time-dependent boundary layers on the cylinder endwalls and sidewall, and the sidewall boundary layer flow in particul...
متن کاملRapidly rotating cylinder flow with an oscillating sidewall.
We present numerical simulations of a flow in a rapidly rotating cylinder subjected to a time-periodic forcing via axial oscillations of the sidewall. When the axial oscillation frequency is less than twice the rotation frequency, inertial waves in the form of shear layers are present. For very fast rotations, these waves approach the form of the characteristics predicted from the linearized in...
متن کامل